Lie point symmetries and an approximate solution for the Schrödinger–Newton equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

C∞−Symmetries and Reduction of Equations Without Lie Point Symmetries

It is proved that several usual methods of reduction for ordinary differential equations, that do not come from the Lie theory, are derived from the existence of C∞ -symmetries. This kind of symmetries is also applied to obtain two successive reductions of an equation that lacks Lie point symmetries but is a reduced equation of another one with a three dimensional Lie algebra of point symmetrie...

متن کامل

Partial Lie-point Symmetries of Diierential Equations

When we consider a diierential equation = 0 whose set of solutions is S, a Lie-point exact symmetry of this is a Lie-point invertible transformation T such that T (S) = S, i.e. such that any solution to = 0 is tranformed into a (generally, diierent) solution to the same equation; here we deene partial symmetries of = 0 as Lie-point invertible transformations T such that there is a nonempty subs...

متن کامل

Lie Point Symmetries and Commuting Flows for Equations on Lattices

Different symmetry formalisms for difference equations on lattices are reviewed and applied to perform symmetry reduction for both linear and nonlinear partial difference equations. Both Lie point symmetries and generalized symmetries are considered and applied to the discrete heat equation and to the integrable discrete time Toda lattice. Résumé Deux formalismes différents pour étudier les sym...

متن کامل

Lie point symmetries of difference equations and lattices

A method is presented for finding the Lie point symmetry transformations acting simultaneously on difference equations and lattices, while leaving the solution set of the corresponding difference scheme invariant. The method is applied to several examples. The found symmetry groups are used to obtain particular solutions of differential-difference equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2006

ISSN: 0951-7715,1361-6544

DOI: 10.1088/0951-7715/19/7/002